

High-Speed Zero-Jitter IO Management And Network-Based Solutions

John C. Glisson

Piedmont Automation Inc.

Introduction

 While the development of network-based distributed IO management has greatly simplified the

design, construction, and operation of industrial process control, digital IO applications requiring the

highest-speed zero-jitter low-latency response times still require costly and complicated FPGA-based

designs. By design, fieldbuses reduce multiple parallel input and output channels into a single serial

channel for communication with a central IO processing unit responsible for management of the serial

bus, processing task timing and interrupts, and combining data from multiple fieldbus systems.

Unfortunately, this model introduces constraints involved in serialization of the input and output data

that may render network-based solutions incapable of handling certain tasks or improperly

implemented networking solutions that leave ambiguity about the machines response times. This paper

describes the crafting of fieldbus systems for minimal response timeouts by describing multiple models

of IO-bus management, illustrating their comparative advantages and disadvantages, presenting

formulae for calculation of their latency and jitter, and validating the formulae and models with a use-

case implementation using B&R hardware.

Background

A. Simple model of IO management over a fieldbus

The following steps are necessary for a Digital Input (DI) to be registered on a PLC-

1. The physical event to be measured happens and is observed in a register on a DI

card

2. A software interrupt triggers the input registers on the remote IO module to

copy into a communications buffer, from which the SI frame is built

3. The bus “handshakes” with the network master on the CPU at its assigned

network timing slot and transfers the SI frame to the CPU

4. The network master CPU copies the data from the bus module to the input

buffer for application code access

Further, the following steps are required to set a Digital Output (DO)-

1. Copy of data from the appropriate internal variable to the output register buffer

2. Software interrupt triggers sending the SO frame from the master network

interface on the CPU the remote IO module

3. Copying of data from SO buffer on IO module to appropriate register for DO

4. Triggering of releasing the DO register to the physical outputs

The speed of which can be affected by the following factors-

1. Number of DI channels per remote IO module

2. Time required to create the buffer per channel

3. Number of remote IO channels to be read

4. Size of remote IO channels

The simplest model of IO communication makes the following assumptions-

- SI frame generation is finished by the time the bus master is ready for the SI frame transmission

to ensure minimal latency reading the inputs. In cases where this cannot be assumed, the SI

frame communication must be delayed one cycle after SI frame generation

- The master is ready for receiving the SI frame at the same time it is ready to send the previous

cycle’s SO frame

- Time between the receipt of the module’s SO frame and setting the DO register is minimal

Note: citation needed for all of the above!

The advantages of the model presented above are as follows-

- Multiple modules’ input data can be ensured to be available at the beginning of the processing

task cycle

- Processing of input registers into communication frames can be done in parallel

- After processing, data can be sent in a synchronized fashion to the appropriate output channels

- The fieldbus master can synchronize the modules such that each input frame is guaranteed to

represent identical discrete-time segments. This means jitter-free communication between

modules.

The disadvantages of the model presented are as follows-

- At least a bus cycle will be required between reading the DI and setting the appropriate DO

- Digital signals too short for the module to register (shorter than the bus cycle time) cannot be

measured reliably

- The bus cycle time cannot be shorter than the amount of time required to process the data (to

ensure that the appropriate registers have been set before transmitting the SO frames).

- Time delays between inputs and outputs are relegated to specific intervals.

Altogether, A chart describing the IO gathering and bus communication looks as follows->

Event Occurs
SI Frame

Generation

Communication

Module -> CPU

Task Cycle

The advantages of the previous model are as follows-

 Being the most basic model, it can be implemented on nearly every existing fieldbus platform

possible

 Maximum amount of time is guaranteed to the module for frame generation

 The only source of unpredictability between the input event and output event is the actual time

between cycles that the event occurred.

The disadvantages-

 Seven cycles of latency are required between inputs and outputs

The model for the total latency is then

For systems where the bus, module, and task are synchronized, this becomes

[More charts and equations explaining each step go here]

Finally, minimum latency can be achieved by staggering the tasks as follows-

Disadvantages-

 Only the second half of the task cycle is available for the task to complete

 If the task has not completed in the appropriate amount of time, old data is sent to the outputs

Advantages-

 Minimum latency is achieved in this fashion

The total latency is then

Solution

A. Optimization of Input Latency

Moving the start time of the task class up by ½ of the bus cycle by delaying the SI frame until

the middle of the cycle means that the SI frame information can be received and processed

earlier than it would be otherwise. The downsides to this are that you must rely on the SI

frame to be available at that time and that you only have half of the cycle to process and

build the SO frame.

[Add diagram here showing comparison of SI frame a beginning and middle of cycle]

The resulting latency between the signal being read and processed on the PLC is the input

frame generation + ½ of the bus cycle + ½ of the system task cycle, the sum of which is

usually just one task cycle

Equipment:

- X20CP1584 Firmware V1.2.0.0

o RS-232 Interface IF1

o Ethernet Interface IF2

o Powerlink Interface IF3

o USB Interfaces IF4 & IF5

o X2X Interface IF6

 X20DI9371

 Hardware Filter <= 100us

 Software Input Filter 0-25ms

 Current Sinking

 X20DO9322

 <300us Switching delay

 Current Sourcing

Settings->

 X2X bus cycle timer used as task timer = 400us

 Inputs delayed to middle of cycle

 Outputs delayed to end of cycle

 Interface optimized for minimum latency

Experiment->

 Using a simple function generator, generate multiple frequencies of square waves

 Document minimum, maximum, and average latency for multiple settings of the

input/output delays and interface optimization settings

Results->

For n=12, the result is that it the model presented above minimizes total input-output latency.

